

Breaking the Heterophily Mixing Barrier in Graph Learning: A Mixed-Curvature Product Manifold Approach

ICONIP 2025

Lizhi Liu @ China UnionPay

Introduction

1 Challenge — GNNs Fail under Heterophily.

Their message passing mechanism assumes similar neighbors, but this breaks down when connected nodes belong to different classes.

2 Core Issue — Heterophily Mixing.

Messages from dissimilar classes become entangled during aggregation, diluting class-discriminative info.

3 Limitation — Existing Fixes Are Coarse.

Spectral filters, signed messages & rewiring lack class-awareness and fail to adapt to local heterophily patterns.

4 Key Insight — Route Messages by Class.

Information should propagate along class-specific tracks to prevent semantic interference.

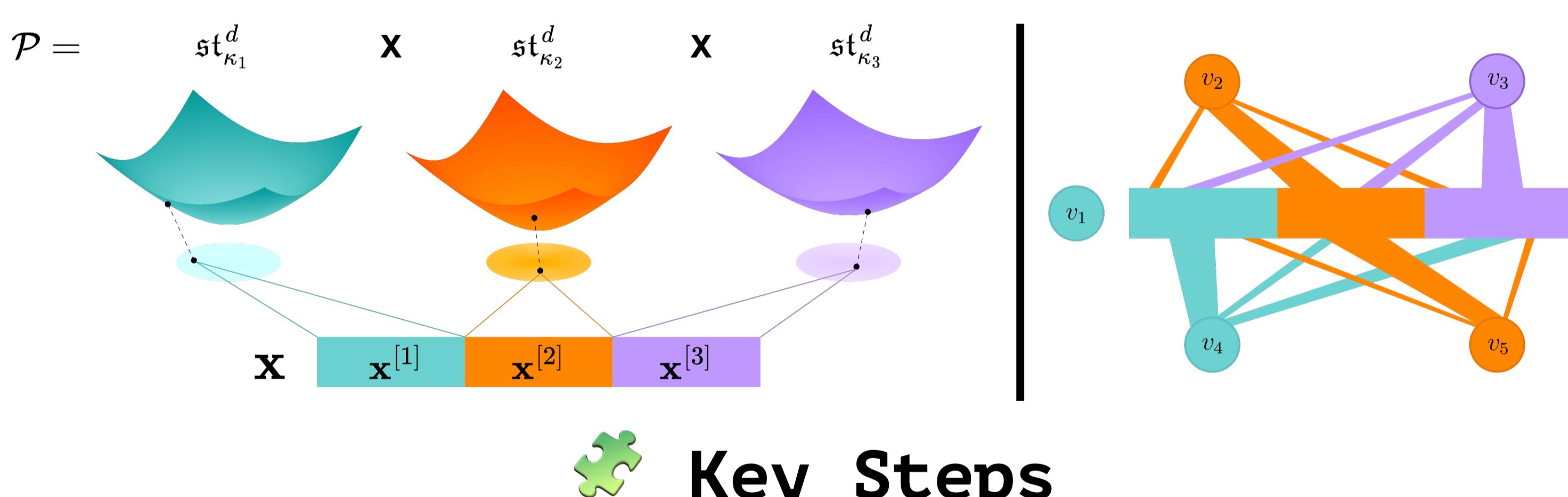
5 Our Solution — XMan-GNN Disentangles Mixing.

We model nodes on a *mixed-curvature product manifold*, guiding message flow into class-aligned submanifolds.

Proposed Method: XMan-GNN

Basic Idea

- XMan-GNN assumes that *nodes of different classes lie on distinct geometric manifolds*.
- During message passing, information is constrained to flow *within class-specific submanifolds*, preventing semantic interference from heterogeneous neighbors.



Key Steps

Step 1: Attention-based Soft Label Assignment

- We employ attention scores to estimate the likelihood of two nodes belonging to the same class, which dynamically guide message routing toward the correct submanifolds.

$$s_{i,j}^{(l)} = \text{Softmax} \left(\frac{\mathbf{W}_{att}^{(l)} \sigma(\mathbf{h}_i^{(l)} + \mathbf{h}_j^{(l)})}{\sqrt{C}} \right)$$

Step 2: Manifold-aware Message Aggregation

- Messages are assembled and aggregated separately on each submanifold using Möbius gyromidpoint as the aggregator, weighted by their attention scores.

$$\begin{aligned} \mathbf{m}_{i,j}^{(l)}[r] &= s_{i,j}^{(l)}[r] \otimes_{\kappa} \exp_{\mathbf{0}}^{\kappa_r}(\mathbf{h}_j^{(l)}) \\ \mathbf{z}_i^{(l)}[r] &= \bigodot_{v_j \in \mathcal{N}(v_i)} [\mathbf{m}_{i,j}^{(l)}[r], 1]_{\kappa_r} = \frac{1}{2} \otimes_{\kappa_r} \left(\frac{\sum_{v_j \in \mathcal{N}(v_i)} \lambda_{\mathbf{m}_{i,j}^{(l)}[r]}^{\kappa_r} \mathbf{m}_{i,j}^{(l)}[r]}{\sum_{v_j \in \mathcal{N}(v_i)} (\lambda_{\mathbf{m}_{i,j}^{(l)}[r]}^{\kappa_r} - 1)} \right) \end{aligned}$$

Step 3: Initial Residual Connections

- To preserve the node's intrinsic features, we introduce initial residual connections using the Möbius gyromidpoint.

$$\mathbf{x}_i^{(l)} = \frac{1}{2} \otimes_{\kappa} \left(\frac{\alpha \lambda_{\mathbf{z}_i^{(l)}}^{\kappa} \mathbf{z}_i^{(l)} + (1 - \alpha) \lambda_{\mathbf{x}_i^{(0)}}^{\kappa} \mathbf{x}_i^{(0)}}{\alpha \lambda_{\mathbf{z}_i^{(l)}}^{\kappa} + (1 - \alpha) \lambda_{\mathbf{x}_i^{(0)}}^{\kappa} - 1} \right)$$

Results

• Performance on *heterophilic* graphs

	Texas	Wisconsin	Cornell	Actor	Squirrel	Chameleon	Amazon-Ratings	BlogCatalog	Avg. Rank
MLP	78.65±4.75	84.31±3.28	74.86±4.84	34.64±0.98	34.11±1.80	52.08±2.13	46.73±0.85	93.07±0.30	9.8
GCN	48.11±6.82	48.82±5.51	38.92±7.27	27.32±0.98	27.12±1.13	40.46±2.27	47.97±0.64	77.81±0.89	18.4
GAT	46.22±7.78	49.41±5.02	45.95±5.92	28.38±1.32	29.93±1.36	44.28±2.19	46.74±0.92	63.72±5.15	17.9
HGCN	64.59±10.22	64.31±5.17	52.16±4.84	24.71±0.70	57.53±1.91	67.36±1.14	44.35±0.59	79.34±1.46	13.1
HyboNet	61.08±6.96	59.41±4.48	49.73±8.82	25.29±0.96	53.49±1.93	70.39±2.32	43.25±0.25	74.20±1.02	14.5
HypFormer	80.27±4.69	84.12±4.59	72.16±6.29	33.40±0.82	33.57±1.93	47.37±1.90	51.93±0.60	94.59±0.93	9.6
SGFormer	60.54±4.22	63.33±7.34	52.16±4.99	33.05±1.74	32.19±2.58	41.58±2.50	42.99±0.50	96.57±0.41	14.6
GOAT	54.32±6.33	56.08±5.05	46.22±6.45	30.00±3.35	33.85±1.21	38.73±7.23	50.28±2.15	92.26±0.87	16.0
PolyFormer	60.54±6.30	60.20±6.39	57.30±5.77	32.69±2.63	42.96±1.65	58.36±1.70	40.84±3.69	92.15±1.68	14.4
Polynormer	76.76±8.73	77.65±3.64	71.08±3.43	35.29±1.44	38.14±1.27	50.33±1.15	43.99±0.44	96.59±0.42	9.5
H2GCN	80.81±5.05	76.47±5.26	69.19±5.57	32.99±1.03	33.29±1.64	56.07±2.05	43.17±0.50	96.03±0.67	11.1
GPR-GNN	74.59±4.55	77.65±4.57	71.62±7.18	34.85±0.78	31.60±0.84	40.70±1.74	43.44±0.27	95.24±0.44	12.4
FAGCN	67.30±4.90	64.51±3.77	60.27±4.84	35.89±0.94	35.75±1.54	50.88±1.80	42.21±0.41	93.72±0.91	12.4
GloGNN	75.95±5.60	83.92±5.60	72.97±5.41	35.45±1.17	57.54±1.39	71.32±2.38	44.63±0.52	92.17±0.56	8.4
ACM-GCN	87.84±4.40	88.43±3.22	80.34±5.89	35.82±1.09	54.40±1.88	66.93±1.85	38.52±0.43	94.98±0.68	6.9
GOAL	83.62±6.72	86.98±4.46	80.68±6.29	35.96±1.04	60.53±1.65	71.65±1.68	37.94±0.33	95.12±0.53	6.1
AERO-GNN	75.95±5.98	68.04±12.34	65.95±3.67	35.74±1.59	36.00±1.15	52.59±2.24	37.47±0.27	95.78±0.73	11.4
Ordered GNN	83.78±5.27	86.47±4.42	75.68±3.20	36.09±0.81	37.32±1.27	50.61±2.09	51.02±0.82	95.27±0.38	6.0
PCNet	60.81±7.28	81.37±3.19	70.27±4.83	35.70±0.84	30.63±1.93	43.73±4.52	38.11±0.74	93.82±1.01	13.9
M2M-GNN	86.22±4.09	88.82±4.21	77.57±3.64	35.91±1.15	63.20±1.71	75.37±1.68	50.19±0.69	96.92±0.48	2.8
XMan-GNN	90.27±3.46	90.59±3.31	84.86±2.16	37.07±0.58	62.46±1.39	76.63±0.76	50.89±0.65	96.89±0.37	1.5

• Performance on *homophilic* graphs

	Cora	CiteSeer	PubMed	Deezer-Europe	Photo	Physics	Avg. Rank
MLP	73.98±1.89	72.51±1.60	86.81±0.37	65.69±0.56	92.25±0.78	96.01±0.26	15.8
GCN	85.69±0.89	75.27±1.75	87.41±0.44	62.70±0.57	94.57±0.56	96.38±0.19	14.0
GAT	85.84±1.15	74.51±1.47	86.57±0.45	60.85±0.85	93.88±1.07	96.10±0.27	16.2
HGCN	82.90±1.36	71.83±1.68	81.80±0.77	56.32±0.68	92.51±0.76	95.62±0.16	20.0
HyboNet	85.33±1.21	72.31±1.62	84.39±0.60	61.44±0.46	93.25±0.66	95.94±0.15	18.7
HypFormer	87.65±0.96	76.25±1.34	88.80±0.36	65.29±0.77	95.23±0.26	96.72±0.19	6.8
SGFormer	85.47±1.28	73.94±1.75	86.61±0.46	65.69±0.83	94.97±0.45	96.42±0.24	12.7
GOAT	80.56±1.59	67.21±1.71	88.49±0.46	65.57±0.71	94.52±0.50	96.63±0.24	13.7
PolyFormer	86.00±0.92	74.69±1.72	89.10±0.43	64.22±0.30	93.83±0.97	96.76±0.14	12.5
Polynormer	86.68±0.82	74.97±1.30	89.27±0.30	66.06±0.71	95.55±0.44	96.85±0.13	6.2
H2GCN	87.00±0.88	75.28±1.43	89.31±0.41	65.07±0.55	95.53±0.53	96.85±0.23	6.2
GPR-GNN	87.48±1.04	76.01±1.45	87.05±0.42	65.38±0.72	94.76±0.48	96.76±0.11	8.3
FAGCN	86.90±1.07	74.51±1.57	86.11±0.51	65.62±0.38	91.77±2.40	96.40±0.17	13.5
GloGNN	86.26±1.72	74.70±1.49	89.24±0.39	64.89±0.52	95.03±1.02	96.55±0.15	11.2
ACM-GCN	86.85±0.91	76.34±1.63	90.02±0.43	65.05±0.55	95.13±0.63	96.25±0.14	8.5
GOAL	87.47±0.88	76.24±1.39	89.25±0.54	64.92±0.62	95.32±0.53	96.72±0.12	7.3
AERO-GNN	86.74±1.29	75.62±1.59	85.28±0.54	64.58±0.43	93.48±0.67	96.54±0.23	13.7
Ordered GNN	87.						