

Breaking the Heterophily Mixing Barrier in Graph Learning: A Mixed-Curvature Product Manifold Approach

Lizhi Liu @ China UnionPay

Introduction

Challenge – GNNs Fail under Heterophily

- Due to the message passing mechanism, GNNs have achieved remarkable success on homophilic graphs, where connected nodes usually share the same label.
- But the performance drops sharply on **heterophilic graphs**, where **connected nodes often belong to different classes**.

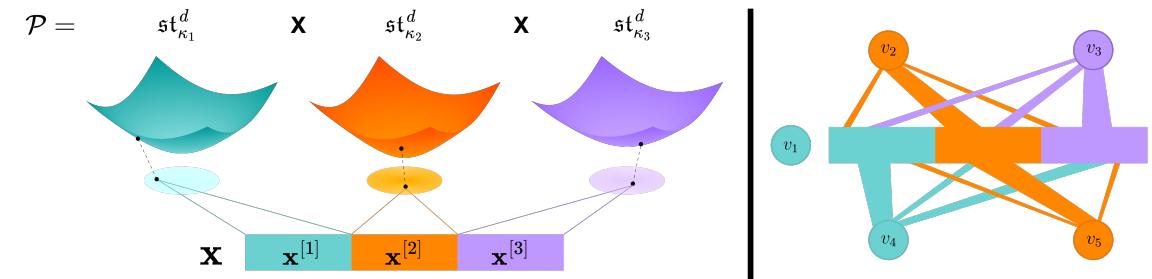
Core Issue – Heterophily Mixing

- Messages from dissimilar classes **become entangled during aggregation**, diluting class-discriminative information.

Our Solution – XMan-GNN Routes Messages by Class

- We assume that **nodes of different classes lie on distinct geometric manifolds**, and thus model nodes on a **mixed-curvature product manifold**.
- During message passing, **information is constrained to flow within class-specific submanifolds**, preventing semantic interference from heterogeneous neighbors.

Methodology



Step 1: Attention-based Soft Label Assignment

$$\mathbf{h}_i^{(l)} = \mathbf{W}_{proj}^{(l)} \text{Log}_0^{\mathcal{K}}(\mathbf{x}_i^{(l-1)}) \quad \mathbf{s}_{i,j}^{(l)} = \text{Softmax} \left(\frac{\mathbf{W}_{att}^{(l)} \sigma(\mathbf{h}_i^{(l)} + \mathbf{h}_j^{(l)})}{\sqrt{C}} \right)$$

Step 2: Manifold-aware Message Aggregation

$$\mathbf{m}_{i,j}^{(l)}[r] = \mathbf{s}_{i,j}^{(l)}[r] \otimes_{\kappa} \exp_{\mathbf{0}}^{\kappa_r}(\mathbf{h}_j^{(l)})$$
$$\mathbf{z}_i^{(l)}[r] = \bigodot_{v_j \in \mathcal{N}(v_i)} [\mathbf{m}_{i,j}^{(l)}[r], 1]_{\kappa_r} = \frac{1}{2} \otimes_{\kappa_r} \left(\frac{\sum_{v_j \in \mathcal{N}(v_i)} \lambda_{\mathbf{m}_{i,j}^{(l)}[r]}^{\kappa_r} \mathbf{m}_{i,j}^{(l)}[r]}{\sum_{v_j \in \mathcal{N}(v_i)} (\lambda_{\mathbf{m}_{i,j}^{(l)}[r]}^{\kappa_r} - 1)} \right)$$

Step 3: Initial Residual Connections

$$\mathbf{x}_i^{(l)} = \frac{1}{2} \otimes_{\mathcal{K}} \left(\frac{\alpha \lambda_{\mathbf{z}_i^{(l)}}^{\mathcal{K}} \mathbf{z}_i^{(l)} + (1 - \alpha) \lambda_{\mathbf{x}_i^{(0)}}^{\mathcal{K}} \mathbf{x}_i^{(0)}}{\alpha \lambda_{\mathbf{z}_i^{(l)}}^{\mathcal{K}} + (1 - \alpha) \lambda_{\mathbf{x}_i^{(0)}}^{\mathcal{K}} - 1} \right)$$

Note: All are Hyperbolic Operations

Breaking the Heterophily Mixing Barrier in Graph Learning: A Mixed-Curvature Product Manifold Approach

Lizhi Liu @ China UnionPay

➤ Performance on *heterophilic* graphs

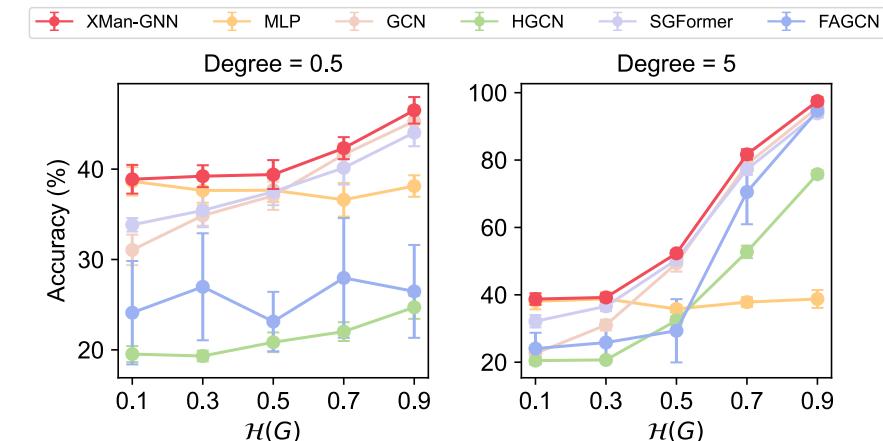
	Texas	Wisconsin	Cornell	Actor	Squirrel	Chameleon	Amazon-Ratings	BlogCatalog	Avg. Rank
MLP	78.65 \pm 4.75	84.31 \pm 3.28	74.86 \pm 4.84	34.64 \pm 0.98	34.11 \pm 1.80	52.08 \pm 2.13	46.73 \pm 0.85	93.07 \pm 0.30	9.8
GCN	48.11 \pm 6.82	48.82 \pm 5.51	38.92 \pm 7.27	27.32 \pm 0.98	27.12 \pm 1.13	40.46 \pm 2.27	47.97 \pm 0.64	77.81 \pm 0.89	18.4
GAT	46.22 \pm 7.78	49.41 \pm 5.02	45.95 \pm 5.92	28.38 \pm 1.32	29.93 \pm 1.36	44.28 \pm 2.19	46.74 \pm 0.92	63.72 \pm 5.15	17.9
HGCN	64.59 \pm 10.22	64.31 \pm 5.17	52.16 \pm 4.84	24.71 \pm 0.70	57.53 \pm 1.91	67.36 \pm 1.14	44.35 \pm 0.59	79.34 \pm 1.46	13.1
HyboNet	61.08 \pm 6.96	59.41 \pm 4.48	49.73 \pm 8.82	25.29 \pm 0.96	53.49 \pm 1.93	70.39 \pm 2.32	43.25 \pm 0.25	74.20 \pm 1.02	14.5
HypFormer	80.27 \pm 4.69	84.12 \pm 4.59	72.16 \pm 6.29	33.40 \pm 0.82	33.57 \pm 1.93	47.37 \pm 1.90	51.93\pm0.60	94.59 \pm 0.93	9.6
SGFormer	60.54 \pm 4.22	63.33 \pm 7.34	52.16 \pm 4.99	33.05 \pm 1.74	32.19 \pm 2.58	41.58 \pm 2.50	42.99 \pm 0.50	96.57 \pm 0.41	14.6
GOAT	54.32 \pm 6.33	56.08 \pm 5.05	46.22 \pm 6.45	30.00 \pm 3.35	33.85 \pm 1.21	38.73 \pm 7.23	50.28 \pm 2.15	92.26 \pm 0.87	16.0
PolyFormer	60.54 \pm 6.30	60.20 \pm 6.39	57.30 \pm 5.77	32.69 \pm 2.63	42.96 \pm 1.65	58.36 \pm 1.70	40.84 \pm 3.69	92.15 \pm 1.68	14.4
Polynormer	76.76 \pm 8.73	77.65 \pm 3.64	71.08 \pm 3.43	35.29 \pm 1.44	38.14 \pm 1.27	50.33 \pm 1.15	43.99 \pm 0.44	96.59 \pm 0.42	9.5
H2GCN	80.81 \pm 5.05	76.47 \pm 5.26	69.19 \pm 5.57	32.99 \pm 1.03	33.29 \pm 1.64	56.07 \pm 2.05	43.17 \pm 0.50	96.03 \pm 0.67	11.1
GPR-GNN	74.59 \pm 4.55	77.65 \pm 4.57	71.62 \pm 7.18	34.85 \pm 0.78	31.60 \pm 0.84	40.70 \pm 1.74	43.44 \pm 0.27	95.24 \pm 0.44	12.4
FAGCN	67.30 \pm 4.90	64.51 \pm 3.77	60.27 \pm 4.84	35.89 \pm 0.94	35.75 \pm 1.54	50.88 \pm 1.80	42.21 \pm 0.41	93.72 \pm 0.91	12.4
GlogGNN	75.95 \pm 5.60	83.92 \pm 5.60	72.97 \pm 5.41	35.45 \pm 1.17	57.54 \pm 1.39	71.32 \pm 2.21	44.60 \pm 0.90	92.17 \pm 0.56	8.4
ACM-GCN	87.84\pm4.40	88.43 \pm 3.22	80.34 \pm 5.89	35.82 \pm 1.09	54.40 \pm 1.88	66.93 \pm 1.85	38.52 \pm 0.43	94.98 \pm 0.68	6.9
GOAL	83.62 \pm 6.72	86.98 \pm 4.46	<u>80.68\pm6.29</u>	35.96 \pm 1.04	60.53 \pm 1.65	71.65 \pm 1.68	31.94 \pm 0.33	95.12 \pm 0.53	6.1
AERO-GNN	75.95 \pm 5.98	68.04 \pm 12.34	65.95 \pm 3.67	35.74 \pm 1.59	36.00 \pm 1.15	52.59 \pm 2.24	37.47 \pm 0.27	95.78 \pm 0.73	11.4
Ordered GNN	83.78 \pm 5.27	86.47 \pm 4.42	75.68 \pm 3.20	<u>36.09\pm0.81</u>	37.32 \pm 1.27	50.61 \pm 2.09	51.02 \pm 0.82	95.27 \pm 0.38	6.0
PCNet	60.81 \pm 7.28	81.37 \pm 3.19	70.27 \pm 4.83	35.70 \pm 0.84	30.63 \pm 1.93	43.73 \pm 4.52	38.11 \pm 0.74	93.82 \pm 1.01	13.9
M2M-GNN	86.22 \pm 4.09	88.82 \pm 4.21	77.57 \pm 3.64	35.91 \pm 1.15	63.20\pm1.71	75.37 \pm 1.68	50.19 \pm 0.69	96.92\pm0.45	2.8
XMan-GNN	90.27\pm3.46	90.59\pm3.31	84.86\pm2.16	37.07\pm0.58	<u>62.46\pm1.39</u>	76.63\pm0.76	50.89 \pm 0.65	96.89 \pm 0.37	1.5

Avg. Rank:
1.5

➤ Performance on *homophilic* graphs

- XMan-GNN also achieves the best results across all homophilic datasets.

➤ Evaluation on synthetic dataset



➤ Over-smoothing analysis

