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The Challenge of Link Prediction

® Link prediction is a crucial task in graph machine learning,
aiming to uncover unobserved relationships in networks.

® Graph Convolutional Network (GCN), while successful in
many graph tasks, falters in link prediction.

® Why do GCNs struggle?

® Limited Expressive Power: GCNs follow a message-
passing scheme equivalent to the Weisfeiler-Leman
(WL) test, which are provably incapable of counting 3-
cycles (triangles) and consequently of counting
Common Neighbors.

[Lf? Incorporating higher-order topological patterns

® Graph Sparsity: In link prediction, many edges are
inherently missing. GCNSs restrict information flow only
to existing edges, which hinders their ability to learn
ideal node representations from the sparse data.

[Lf?? Message-passing beyond hardwired interactions

Protein-Protein Interaction Network



Our Solution: TopoLink

® \We propose TopolLink, a novel topology-
enhanced graph Transformer with extended
persistent homology designed specifically for
link prediction.

® Core Contributions:

® A Simplified Graph Transformer (SGT)
that integrates a classical GCN with a
linear-complexity global attention
module to capture both local and global
information.

® |[ntroduction of Extended Persistent
Homology (EPH) to detect topological
features like cycles, enhancing the
expressive power.

® A novel approach to process topological
data: We transform EPH into
persistence images and use a Vision
Transformer (ViT) to create powerful
vectorized topological fingerprints.
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Background: Persistent Homology (PH)

® PH is a tool from Topological Data Analysis (TDA) that quantifies multi-scale topological features
(“holes”), like connected components (0D holes) and loops (1D holes).

® |t works by analyzing a filtration, which is a sequence of nested subgraphs.

® The “birth” and “death” of topological features during the filtration are recorded in a persistence
diagram.

® Problem with ordinary PH: In graphs, essential features like the main connected component or
large loops might never “die”, leading to information loss.

® Extended Persistent Homology (EPH): Solves this by using a complementary descending
filtration, ensuring all features have a finite lifespan. This captures richer topological information.
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Methodology: Simplified Graph Transformer (SGT)

® 1. Graph Convolution I’F  Local Information
® Aggregates information from the local 1-hop neighborhood.

_ ‘ _ Simplified X(l+1)
® Follows the classic message-passing mechanism of GCNs: Graph
- f
Xg+1) _ AX(Z)W(I) Transformer A\ s o
® 2. Simple Global Attention (SGA) ['3 Global Information N
® Captures global information and implicit dependencies between all _
node pairs. Lzl
(+1) _ ( (z))‘l GIR0) ( (l))T 0
X A {V + NQ K A% <>
where Q¥ = F® (X(w), KO = 70 (X(l)>7 v = 70 (Xm), Add
e 1 T Add & BN C) <> Add & BN
D — di i 010, (1)
A® — diag <1+NQ <(K ) 1)) ]
® Alters the standard attention computation to achieve linear complexity, Simple Graoh
making it scalable. Global Convoﬁmon
® Helps overcome the message-passing limitations imposed by sparse, Attention
unobserved edges. A 1\
® 3. Fusion ]
® Local and global representations are combined, passed through X( ) G

normalization and linear layers to produce the final node embeddings. Node representation  Graph adjacency



Methodology: Detecting Topological Structure

® Filtration: We use a filtration based on the Ollivier-Ricci curvature, which measures local connectivity
and geometry in the graph. a, if 2 = u,
Filtration function f :u — ZUEN(U) Ko (U, V) po(z) == (1 — @)/deg(u), if z € N(u),

W( o 0, otherwise.
. - . Wlpg,p
Ollivier-Ricci curvature | Kq(u,v) :=1 o e Lazy random walk-based

(u, U) probability measure

® Extended Persistence Image (EPI): The resulting EPH diagram is transformed into a 2D EPI. Each
point in the diagram is represented by a Gaussian kernel on the image plane.
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® Vision Transformer (ViT) Descriptor: Instead of simply flattening the image, we use ViT to process EPI.
® |t allows for a deep abstraction and refinement of the visual patterns in the EPI.
® The ViT's output serves as a sophisticated topological fingerprint for the subgraph.




Experimental Results

® Key Result: TopolLink achieves new state-of-the-art performance across all 15 datasets,
outperforming runner-up methods by 0.55-18.84%.

® Performance gains are particularly pronounced on non-attributed graphs, highlighting our
model's strength in leveraging purely topological information when node features are absent.

RESULTS ON LINK PREDICTION BENCHMARKS. THE RESULTS ON OGB BENCHMARK COLLAB ARE TAKEN FROM THE OGB LEADERBOARD. THE
BOLDFACE ITEMS REPRESENT THE BEST PERFORMANCE, AND THE RUNNER-UPS ARE UNDERLINED.

Attributed Graph

—— ‘ Non-attributed Graph

Pubmed CS Physics  Computers Photo Wiki Collab ‘ USAir NS PB Yeast C.ele Power Router E.coli
Metric | Hits@20 Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 | Hits@50 || Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 Hits@50
CN | 2791 53.84 66.83 33.29 43.50 76.96 6137 || 8726 82.85 50.81 79.38 65.89 18.51 13.76 60.16
GCN | 49.55 62.49 72.98 35.98 47.33 80.79 4475 || 9245 46.72 54.58 79.81 65.89 35.81 61.60 79.40
SEAL 51.87 66.55 76.79 37.12 46.03 84.29 64.74 95.28 96.72 48.59 89.39 7523 61.15 72.96 85.95
SIEG 56.24 81.11 77.28 39.23 55.67 89.21 - 95.28 97.08 59.72 89.48 80.37 44.01 74.72 84.11
ELPH 54.20 71.34 69.65 39.08 55.69 92.94 66.36 95.75 86.81 58.17 82.81 85.98 37.63 39.36 79.40
NCNC 54.91 74.58 75.67 40.01 53.48 91.69 66.61 94.81 96.35 57.69 86.91 74.30 38.24 73.44 81.51
BScNets 43.75 69.41 70.16 36.63 51.79 81.29 - 95.28 95.62 52.32 79.56 78.88 44.61 58.88 81.38
TLC-GNN 40.46 68.54 72.29 36.84 50.37 76.93 - 86.79 91.97 52.74 81.09 79.72 37.78 54.72 83.45
PLH-GNN 46.46 75.15 74.14 37.38 55.95 82.08 - 93.87 88.32 5572 87.94 85.98 41.73 38.88 87.31
TopoLink | 58.91 86.16 78.88 40.99 58.18 93.45 67.92 || 99.53 98.90 63.61 93.58 92.52 67.07 88.80 90.86




Experimental Results

® TopolLink is the first PH-based method to rank at the top of the competitive
Stanford OGB Leaderboard for the Collab dataset.
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Leaderboard for ogbl-collab
The Hits@50 score on the test and validation sets. The higher, the better.

Package: >=1.2.1

Ext. Test Validation
Rank Method data Hits@50 Hits@50 Contact References #Params Hardware Date
1 HyperFusion No 0.7129 + 0.7385+ Xinwei Zhang (Tsinghua Paper, 1,064,446,212 RTX 3080 Feb 24,
0.0018 0.0099 University) Code 2024
2 GIDN@YITU No 0.7096 0.9620 + Zixiao Wang, Yu Paper, 60,449,025 DepGraph@SCTS/CGCL Oct 10,
0.0055 0.0040 Zhang(ZhejiangLab, HUST) Code 2022
3 PLNLP + SIGN No 0.7087 + 1.0000 Liang Yao (Tencent) Paper, 34,980,864 Tesla-P40 (24G GPU) Apr7,
Ranked No. 9 Code
9 TopoLink No 0.6792 + 0.6771 Lizhi Liu (China UnionPay) Paper, 483,363,845 RTX 4090 (24GB GPU) Sep 9,
0.0074 0.0083 Code 2024

Source: https://ogb.stanford.edu/docs/leader_linkprop/#ogbl-collab (Time: Jun 2025)



Ablation Study on Persistent Homology

® Finding #1: Removing the EPH module entirely (w/o EPH) causes a significant performance
drop, demonstrating the necessity of topological features.

® Finding #2: EPH provides better results than ordinary PH, confirming its ability to capture
more useful information.

® Finding #3: Using the VIT to process the persistence image is superior to simply flattening it
(w/ Flatten PI) or using other vectorization methods like Persistence Landscapes (w/ EPL).
This supports our novel use of computer vision techniques.

ABLATION ANALYSIS OF EXTENDED PERSISTENT HOMOLOGY.

Dataset | Pubmed CS | PB Yeast
TopoLink | 58.91 86.16 | 63.61 93.58
w/o EPH 55.70 83.55 | 60.98 92.66
w/ Ordinary PH 57.96 8493 | 61.62 92.74
w/ Flatten PI 57.05 84.39 | 58.77 92.73
w/ PL 55.39 84.98 | 60.38 92.21
w/ EPL 55.96 85.83 | 61.28 92.90




Conclusion

® \We introduce TopoLink, a new SOTA topological model for link prediction.
® Key Innovations:
® A Simplified Graph Transformer (SGT) that combines local GCN-based message
passing with an linear global attention mechanism, overcoming issues of graph sparsity.
® The integration of Extended Persistent Homology (EPH) to capture higher-order
topological structures like cycles, boosting the model's expressive power.
® The first use of a Vision Transformer (ViT) to deeply analyze and vectorize
persistence images, creating powerful topological fingerprints.
® Limitations:
® The computation time of persistent homology is significantly longer compared to
other components in the model, becoming a bottleneck.
® This hinders the scalability of the methodology to large-scale graphs.
® Future Work:
® Improve the computational efficiency of persistent homology to enable scalability to
large graphs.
® Generalize the framework to other graph types like directed and bipartite graphs.



Thank you!

Homepage




