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The Challenge of Link Prediction
l Link prediction is a crucial task in graph machine learning, 

aiming to uncover unobserved relationships in networks.
l Graph Convolutional Network (GCN), while successful in 

many graph tasks, falters in link prediction.
l Why do GCNs struggle?

l Limited Expressive Power: GCNs follow a message-
passing scheme equivalent to the Weisfeiler-Leman 
(WL) test, which are provably incapable of counting 3-
cycles (triangles) and consequently of counting 
Common Neighbors.

l Graph Sparsity: In link prediction, many edges are 
inherently missing. GCNs restrict information flow only 
to existing edges, which hinders their ability to learn 
ideal node representations from the sparse data.
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Our Solution: TopoLink
l We propose TopoLink, a novel topology-

enhanced graph Transformer with extended 
persistent homology designed specifically for 
link prediction.

l Core Contributions:
l A Simplified Graph Transformer (SGT)

that integrates a classical GCN with a 
linear-complexity global attention 
module to capture both local and global 
information.

l Introduction of Extended Persistent 
Homology (EPH) to detect topological 
features like cycles, enhancing the 
expressive power.

l A novel approach to process topological 
data: We transform EPH into 
persistence images and use a Vision 
Transformer (ViT) to create powerful 
vectorized topological fingerprints.
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Overall model architecture of TopoLink



Background: Persistent Homology (PH)
l PH is a tool from Topological Data Analysis (TDA) that quantifies multi-scale topological features

(“holes”), like connected components (0D holes) and loops (1D holes).
l It works by analyzing a filtration, which is a sequence of nested subgraphs.
l The “birth” and “death” of topological features during the filtration are recorded in a persistence 

diagram.
l Problem with ordinary PH: In graphs, essential features like the main connected component or 

large loops might never “die”, leading to information loss.
l Extended Persistent Homology (EPH): Solves this by using a complementary descending 

filtration, ensuring all features have a finite lifespan. This captures richer topological information.



Methodology: Simplified Graph Transformer (SGT)
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l 1. Graph Convolution
l Aggregates information from the local 1-hop neighborhood.
l Follows the classic message-passing mechanism of GCNs:

l 2. Simple Global Attention (SGA)
l Captures global information and implicit dependencies between all 

node pairs.

l Alters the standard attention computation to achieve linear complexity, 
making it scalable.

l Helps overcome the message-passing limitations imposed by sparse, 
unobserved edges.

l 3. Fusion
l Local and global representations are combined, passed through 

normalization and linear layers to produce the final node embeddings.
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Methodology: Detecting Topological Structure
l Filtration: We use a filtration based on the Ollivier-Ricci curvature, which measures local connectivity 

and geometry in the graph.

l Extended Persistence Image (EPI): The resulting EPH diagram is transformed into a 2D EPI. Each 
point in the diagram is represented by a Gaussian kernel on the image plane.

l Vision Transformer (ViT) Descriptor: Instead of simply flattening the image, we use ViT to process EPI.
l It allows for a deep abstraction and refinement of the visual patterns in the EPI.
l The ViT's output serves as a sophisticated topological fingerprint for the subgraph.

Filtration function 

Ollivier-Ricci curvature Lazy random walk-based 
probability measure

EPH diagram EPI



Experimental Results
l Key Result: TopoLink achieves new state-of-the-art performance across all 15 datasets, 

outperforming runner-up methods by 0.55-18.84%.
l Performance gains are particularly pronounced on non-attributed graphs, highlighting our 

model's strength in leveraging purely topological information when node features are absent.



Experimental Results

Source: https://ogb.stanford.edu/docs/leader_linkprop/#ogbl-collab (Time: Jun 2025)

l TopoLink is the first PH-based method to rank at the top of the competitive 
Stanford OGB Leaderboard for the Collab dataset.

Ranked No. 9



Ablation Study on Persistent Homology
l Finding #1: Removing the EPH module entirely (w/o EPH) causes a significant performance 

drop, demonstrating the necessity of topological features.
l Finding #2: EPH provides better results than ordinary PH, confirming its ability to capture 

more useful information.
l Finding #3: Using the ViT to process the persistence image is superior to simply flattening it 

(w/ Flatten PI) or using other vectorization methods like Persistence Landscapes (w/ EPL). 
This supports our novel use of computer vision techniques.



Conclusion
l We introduce TopoLink, a new SOTA topological model for link prediction.
l Key Innovations:

l A Simplified Graph Transformer (SGT) that combines local GCN-based message 
passing with an linear global attention mechanism, overcoming issues of graph sparsity.

l The integration of Extended Persistent Homology (EPH) to capture higher-order 
topological structures like cycles, boosting the model's expressive power.

l The first use of a Vision Transformer (ViT) to deeply analyze and vectorize 
persistence images, creating powerful topological fingerprints.

l Limitations:
l The computation time of persistent homology is significantly longer compared to 

other components in the model, becoming a bottleneck.
l This hinders the scalability of the methodology to large-scale graphs.

l Future Work:
l Improve the computational efficiency of persistent homology to enable scalability to 

large graphs.
l Generalize the framework to other graph types like directed and bipartite graphs.
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