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Directedness of Graph
l Edge directions in graphs play a unique role: reflect the flow of information.
l However, most existing graph machine learning studies focus on undirected 

graphs, largely ignoring directionality.



Existing Work: Extending GCN to Directed Graph

l Recent works have extended Graph Convolutional Networks (GCNs) to 
directed graphs by leveraging the complex-valued magnetic Laplacian
to encode directionality.
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The Problem: Over-smoothing in Directed GCN
l Key Issue: Our theoretical analysis reveals that directed GCN also suffer from 

over-smoothing, similar to their undirected counterparts.

Consider the non-trivial magnetic Laplacian 𝐋 ! , assuming that 𝑞 ≠ 0 and
𝐌 ≠ 𝐌". If the directed connected graph 𝐺 contains no cycles and is not 
bipartite, then for any 𝐱 ∈ ℂ# and 𝛼 ∈ (0, 1], we have

lim
$→&'

𝐈 − 𝛼𝐋 ! $
𝐱 = 0.

Theorem

l Implication: As the model deepens, node signals vanish, leading to catastrophic 
forgetting of local information.



Proposed Method: DIGRAM
l We propose DIGRAM, a tokenized directed graph Mamba model, to tackle the 

over-smoothing problem.
l Core Idea: We reinterpret magnetic graph convolution’s message passing as a 

token sequence generation process.
l As new tokens emerge, information from each hop is progressively introduced 

into a state space model in an autoregressive fashion.



How It Works: Step-by-Step

l Token Sequence Generation
l We interpret the message passing of a non-parametric magnetic GCN as a 

generative process for a sequence of tokens.
l The representation of the 𝑘-th token is computed via feature propagation:

𝐗 ! = #𝐓 " !𝐗,
with the initial feature defined as 𝐗 = 𝐗 ( .



How It Works: Step-by-Step

l Progressive Aggregation with Mamba
l As new tokens (hops) are generated, we feed 

them into the Mamba cell autoregressively.
l The selective state space mechanism controls 

information flow, allowing the model to 
adaptively aggregate multi-hop information.

l It allows DIGRAM to integrate high-order 
topological information while storing the local 
context, mitigating the knowledge forgetting 
dilemma from over-smoothing.



Theoretical Justification
l The ability to express a polynomial filter with arbitrary coefficients is crucial for 

preventing over-smoothing.

Given a self-looped directed graph 8𝐺 and a graph signal 𝐗, a 𝐾-layer 
DIGRAM model is capable of expressing a 𝐾-order polynomial frequency 
filter 𝐹) 𝐗 with arbitrary coefficients 𝜃* for 𝑘 = 0,⋯ , 𝐾.

Theorem

l Implication: It demonstrates that DIGRAM can capture diverse graph signal 
patterns (low and high frequency).

l Sufficient expressiveness in the spectral domain means the model no longer 
suffers from the over-smoothing issue.



Main Results: Node Classification
l Improvements of 1.53%, 3.02%, 2.22%, and 2.50% across four datasets.



Main Results: Link Prediction
l DIGRAM achieves state-of-the-art results in all 12 cases.

Three subtasks: Existence Prediction (EP), Direction Prediction (DP), Three-class Prediction (3C) 



Key Finding: Mitigating Over-smoothing
l DIGRAM is the only method that maintains stable or even improves performance as layers 

increase on both node classification (NC) and link prediction (EP, DP, 3C) tasks.
l In contrast, SOTA methods experience a sharp performance decline as the network deepens.
l It strongly supports our claim that tokenized graph Mamba effectively mitigates the over-

smoothing problem.



Conclusion, Limitations & Future Work
l Summary

l We introduce DIGRAM, a tokenized graph Mamba model for directed graph learning.
l By treating message passing as a token sequence generation process, DIGRAM 

simultaneously captures local and global topological contexts.
l DIGRAM achieves superior performance on node classification and link prediction tasks 

across 16 cases compared with SOTA methods.
l Crucially, it demonstrates robustness against the over-smoothing problem as model depth 

increases.

l Limitations
l Parameter Sensitivity: The performance of the model is somewhat sensitive to the choice 

of the charge parameter q, requiring careful manual tuning.
l Heterophily Challenge: Similar to other models based on the classical message-passing 

framework, its performance on heterophilic directed graphs remains suboptimal.

l Future Work
l Exploring strategies to address heterophily mixing.
l Extending the methodology to signed graphs.
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