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Directedness of Graph

® Edge directions in graphs play a unique role: reflect the flow of information.

® However, most existing graph machine learning studies focus on undirected
graphs, largely ignoring directionality.




Existing Work: Extending GCN to Directed Graph

® Recent works have extended Graph Convolutional Networks (GCNSs) to
directed graphs by leveraging the complex-valued magnetic Laplacian
to encode directionality.
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The Problem: Over-smoothing in Directed GCN

® Key Issue: Our theoretical analysis reveals that directed GCN also suffer from
over-smoothing, similar to their undirected counterparts.

Consider the non-trivial magnetic Laplacian L(?’, assuming that ¢ # 0 and
M = MT. If the directed connected graph G contains no cycles and is not
bipartite, then for any x € C" and « € (0, 1], we have

lim (I — aL(q))lx = 0.

l>+o0o0

® Implication: As the model deepens, node signals vanish, leading to catastrophic
forgetting of local information.



Proposed Method: DIGRAM

® \We propose DIGRAM, a tokenized directed graph Mamba model, to tackle the
over-smoothing problem.

® Core Idea: We reinterpret magnetic graph convolution’s message passing as a
token sequence generation process.

® As new tokens emerge, information from each hop is progressively introduced
into a state space model in an autoregressive fashion.
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How It Works: Step-by-Step
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® Token Sequence Generation

® Ve interpret the message passing of a non-parametric magnetic GCN as a
generative process for a sequence of tokens.

® The representation of the k-th token is computed via feature propagation:
X&) = Tl@ky

with the initial feature defined as X = X(®.



How It Works: Step-by-Step
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o Progressive Aggregation with Mamba Algorithm 1: The sketched procedure of DIGRAM
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® As new tokens (hops) are generated, we feed features X — {x,} .+ Maximum hop K
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context, mitigating the knowledge forgetting
dilemma from over-smoothing.
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Theoretical Justification

® The ability to express a polynomial filter with arbitrary coefficients is crucial for
preventing over-smoothing.

Given a self-looped directed graph G and a graph signal X, a K-layer
DIGRAM model is capable of expressing a K-order polynomial frequency
filter Fx (X) with arbitrary coefficients 6, fork =0, -, K.

® Implication: It demonstrates that DIGRAM can capture diverse graph signal
patterns (low and high frequency).

® Sufficient expressiveness in the spectral domain means the model no longer
suffers from the over-smoothing issue.



Main Results: Node Classification

® Improvements of 1.53%, 3.02%, 2.22%, and 2.50% across four datasets.

NODE CLASSIFICATION ACCURACY (%). THE BEST RESULTS ARE IN
BOLD, AND THE RUNNER-UPS ARE UNDERLINED.

| Cora-ML CiteSeer WikiCS PubMed
MLP 75.79+0.70 64.10+2.07 79.284+2.03  82.30+1.30
GCN 80.97+0.74 68.33+1.92  78.30+2.01 81.62+1.32
DGCN 84.47+048 70.74+129 80.44+2.09 84.91+0.32
DiGCN 85.484+0.28 72.01+028 81.80+225 84.88+0.25
DiGCN-IB | 85.64+2.02 72.24+0.75 82.56+230 85.11+0.31
DiGCL 75.29+2.18 62.75+1.57 69.80+229  75.23+0.95
MagNet 79.97+237  67.57+1.75  T77.87+2.11  84.6940.75
HoloNets 85.78+1.83  72.55+092 80.91+142 84.23+1.97
DiGAE 81.144+047 69.38+2.06 78.26+1.89 81.59+1.24
Dir-GNN 85.30+0.57 71.79+222 82.27+160  83.3610.52
LightDiC 78.96+145  66.15+0.92  79.75+099  69.68+1.06
DUPLEX 85.31+1.78 72.85+1.27 83.04+131  85.63+0.23
DIGRAM 87.31+036 75.87+0.53 85.26+042 88.13+0.29




Main Results: Link Prediction

® DIGRAM achieves state-of-the-art results in all 12 cases.

LINK PREDICTION ACCURACY (%). THE BEST RESULTS ARE IN BOLD, AND THE RUNNER-UPS ARE UNDERLINED.

EP DP 3C
Cora-ML CiteSeer WikiCS PubMed Cora-ML CiteSeer WikiCS PubMed Cora-ML CiteSeer WikiCS PubMed
MLP 78.81+0.85 68.51+1.98 87.53+0.79  87.82+222 | 89.04+1.02 88.86+1.20 86.55+224 94.92+066 | 71.66+046 65.14+147 T77.23+156 84.19+1.54
GCN 77.38+047 69.57+044  85.024+230 76.354+0.97 | 85.89+2.06 81.52+0.62 79.934+098  83.19+1.97 | 72.73+147 63.17+141  T1.324+196 63.82+1.62
DGCN 76.794+0.79  65.74+134  86.52+1.71  89.51+1.94 | 88.92+140 87.91+032 86.23+0.87 95.56+1.81 | 70.84+057 66.82+1.16 80.22+0.72  84.2440.98
DiGCN 72.98+1.34  67.87+1.55 82.88+1.08 84.18+1.16 | 88.16+1.04 87.68+1.19 83.36+1.94 94.74+1.00 | 68.37+036 62.56+2.16 73.89+0.64  80.60+1.31
DiGCN-IB | 74.76+1.19 71.28+0.77 81.70+0.67 88.54+0.89 | 90.43+0.40 89.10+1.12 84.16+1.50 95.62+2.10 | 71.33+1.75 63.174+2.08 74.924+0.84 83.42+2.10
DiGCL 64.88+0.92 59.87+0.89 76.32+1.50  71.39+1.93 | 72.29+1.63  68.72+133  69.64+128 81.02+1.57 | 46.79+222 38.81+1.89 61.10+1.01  56.89+1.68

MagNet 77.50+2.11  68.30+0.76  72.08+1.45  71.07+0.77 | 90.43+1.07 88.39+1.60 72.79+0.61 81.66+1.08 | 70.59+1.93  64.69+2.04 64.91+085 67.34+0.36
HoloNets 80.00+0.78  71.49+083  80.71+1.10  88.52+0.80 | 89.04+1.79  88.39+1.03 86.01+2.05 96.14+0.77 | 71.99+2.07 64.23+159 68.49+040 84.31+2.29

DiGAE 65.60+125 61.91+1.92 73.95+2.14 60.31+0.69 | 71.16+2.13 56.40+1.96 59.83+0.76  55.194050 | 51.32+1.17 47.794+0.83  56.87+1.77 41.76+1.54
Dir-GNN 79.294032  69.36+1.41  86.87+1.82  90.12+2.04 | 89.80+0.57 88.39+1.72 88.67+0.64 95.78+2.01 | 74.88+1.78  64.54+091  80.50+0.57 85.05+1.68
LightDiC 72.38+133  65.53+145 83.73+032  77.93+045 | 75.81+0.75 83.89+0.72 85.38+1.39  80.08+1.88 | 64.61+093 64.99+086  78.73+036  70.55+2.25
DUPLEX 81.31+1.14 80.85+1.85 90.66+0.39 91.36+1.33 | 88.04+0.91 87.44+153  88.07+0.51 96.32+0.65 | 74.22+1.15 76.41+067 77.50+145  86.7040.53

DIGRAM | 92.12+045 86.85+0.28 93.69+057  92.63+0.15 | 91.00+0.20 89.71+046 91.64+0.18 97.32+0.17 | 84.75+0.28 83.34:+0.50 89.25+0.69  93.04:0.22

Three subtasks: Existence Prediction (EP), Direction Prediction (DP), Three-class Prediction (3C)
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ey Finding: Mitigating Over-smoothing

DIGRAM is the only method that maintains stable or even improves performance as layers
increase on both node classification (NC) and link prediction (EP, DP, 3C) tasks.

In contrast, SOTA methods experience a sharp performance decline as the network deepens.

It strongly supports our claim that tokenized graph Mamba effectively mitigates the over-
smoothing problem.
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Conclusion, Limitations & Future Work

® Summary
® \We introduce DIGRAM, a tokenized graph Mamba model for directed graph learning.
® By treating message passing as a token sequence generation process, DIGRAM
simultaneously captures local and global topological contexts.

® DIGRAM achieves on node classification and link prediction tasks
across 16 cases compared with SOTA methods.

® Crucially, it demonstrates as model depth
increases.

® Limitations
® Parameter Sensitivity: The performance of the model is somewhat sensitive to the choice
of the charge parameter q, requiring careful manual tuning.
® Heterophily Challenge: Similar to other models based on the classical message-passing
framework, its performance on heterophilic directed graphs remains suboptimal.

® Future Work
® Exploring strategies to address heterophily mixing.
® Extending the methodology to signed graphs.
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