Every Hop Etched in Memory: Tokenized Graph Mamba Meets Directed Graph Learning Lizhi Liu China UnionPay # Directedness of Graph - Edge directions in graphs play a unique role: reflect the flow of information. - However, most existing graph machine learning studies focus on undirected graphs, largely ignoring directionality. ## Existing Work: Extending GCN to Directed Graph Recent works have extended Graph Convolutional Networks (GCNs) to directed graphs by leveraging the complex-valued magnetic Laplacian to encode directionality. # The Problem: Over-smoothing in Directed GCN Key Issue: Our theoretical analysis reveals that directed GCN also suffer from over-smoothing, similar to their undirected counterparts. ## Theorem Consider the non-trivial magnetic Laplacian $\mathbf{L}^{(q)}$, assuming that $q \neq 0$ and $\mathbf{M} \neq \mathbf{M}^T$. If the directed connected graph G contains no cycles and is not bipartite, then for any $\mathbf{x} \in \mathbb{C}^N$ and $\alpha \in (0,1]$, we have $$\lim_{l \to +\infty} (\mathbf{I} - \alpha \mathbf{L}^{(q)})^l \mathbf{x} = 0.$$ Implication: As the model deepens, node signals vanish, leading to catastrophic forgetting of local information. # Proposed Method: DIGRAM - We propose DIGRAM, a tokenized directed graph Mamba model, to tackle the over-smoothing problem. - Core Idea: We reinterpret magnetic graph convolution's message passing as a token sequence generation process. - As new tokens emerge, information from each hop is progressively introduced into a state space model in an autoregressive fashion. # How It Works: Step-by-Step ## Token Sequence Generation - We interpret the message passing of a non-parametric magnetic GCN as a generative process for a sequence of tokens. - The representation of the *k*-th token is computed via feature propagation: $$\mathbf{X}^{(k)} = \widetilde{\mathbf{T}}^{(q)k}\mathbf{X},$$ with the initial feature defined as $\mathbf{X} = \mathbf{X}^{(0)}$. # How It Works: Step-by-Step ## Progressive Aggregation with Mamba - As new tokens (hops) are generated, we feed them into the Mamba cell autoregressively. - The selective state space mechanism controls information flow, allowing the model to adaptively aggregate multi-hop information. - It allows DIGRAM to integrate high-order topological information while storing the local context, mitigating the knowledge forgetting dilemma from over-smoothing. #### **Algorithm 1:** The sketched procedure of DIGRAM ``` Input: Hermitian adjacency matrix \tilde{\mathbf{T}}^{(q)}; Initial features \mathbf{X} = \{\mathbf{x}_i\}_{i=1}^N; Maximum hop K Output: Node representations \mathbf{O}^{(K)} = \{\mathbf{o}_i^{(K)}\}_{i=1}^N 1: Initialize \mathbf{h}_i^{(-1)} \leftarrow 0 for each i = 1, \cdots, N; 2: for k \leftarrow 0 to K do 3: | for i \leftarrow 1 to N do 4: | \mathbf{z}_i^{(k)} \leftarrow \text{unwind}(\mathbf{x}_i^{(k)}); 5: | \mathbf{h}_i^{(k)} \leftarrow \tilde{\mathbf{A}}^{(k)} \odot \mathbf{h}_i^{(k-1)} + \mathbf{B}^{(k)}(\boldsymbol{\Delta}^{(k)} \odot \mathbf{z}_i^{(k)}); 6: | \mathbf{o}_i^{(k)} \leftarrow \mathbf{C}^{(k)} \mathbf{h}_i^{(k)} + \mathbf{D} \odot \mathbf{z}_i^{(k)}; 7: end 8: | \mathbf{X}^{(k+1)} \leftarrow \tilde{\mathbf{T}}^{(q)} \mathbf{X}^{(k)}; 9: end ``` ## Theoretical Justification The ability to express a polynomial filter with arbitrary coefficients is crucial for preventing over-smoothing. ### Theorem Given a self-looped directed graph \tilde{G} and a graph signal **X**, a K-layer DIGRAM model is capable of expressing a K-order polynomial frequency filter $F_K(\mathbf{X})$ with arbitrary coefficients θ_k for $k=0,\cdots,K$. - Implication: It demonstrates that DIGRAM can capture diverse graph signal patterns (low and high frequency). - Sufficient expressiveness in the spectral domain means the model no longer suffers from the over-smoothing issue. ## Main Results: Node Classification Improvements of 1.53%, 3.02%, 2.22%, and 2.50% across four datasets. NODE CLASSIFICATION ACCURACY (%). THE BEST RESULTS ARE IN BOLD, AND THE RUNNER-UPS ARE UNDERLINED. | | Cora-ML | CiteSeer | WikiCS | PubMed | |--------------------|---|--------------------------------------|----------------------------------|--------------------------------------| | MLP
GCN | 75.79 ± 0.70
80.97 ± 0.74 | 64.10 ± 2.07
68.33 ± 1.92 | 79.28 ± 2.03 78.30 ± 2.01 | 82.30±1.30
81.62±1.32 | | | | | | | | DGCN
DiGCN | 84.47 ± 0.48
85.48 ± 0.28 | 70.74 ± 1.29 72.01 ± 0.28 | 80.44 ± 2.09
81.80 ± 2.25 | 84.91 ± 0.32
84.88 ± 0.25 | | DiGCN-IB | 85.64 ± 2.02 | 72.01 ± 0.28 72.24 ± 0.75 | 82.56 ± 2.30 | 85.11 ± 0.31 | | DiGCL | 75.29 ± 2.18 | 62.75 ± 1.57 | 69.80 ± 2.29 | 75.23 ± 0.95 | | MagNet
HoloNets | $\begin{array}{c c} 79.97 \pm 2.37 \\ 85.78 \pm 1.83 \end{array}$ | 67.57 ± 1.75
72.55 ± 0.92 | 77.87 ± 2.11
80.91 ± 1.42 | 84.69 ± 0.75
84.23 ± 1.97 | | DiGAE | 81.14±0.47 | 69.38±2.06 | 78.26±1.89 | 81.59±1.24 | | Dir-GNN | 85.30±0.57 | 71.79 ± 2.22 | $82.27{\pm}1.60$ | 83.36 ± 0.52 | | LightDiC | 78.96 ± 1.45 | 66.15 ± 0.92 | 79.75 ± 0.99 | 69.68 ± 1.06 | | DUPLEX | 85.31±1.78 | 72.85 ± 1.27 | 83.04 ± 1.31 | 85.63 ± 0.23 | | DIGRAM | 87.31±0.36 | 75.87±0.53 | 85.26±0.42 | 88.13±0.29 | ## Main Results: Link Prediction DIGRAM achieves state-of-the-art results in all 12 cases. LINK PREDICTION ACCURACY (%). THE BEST RESULTS ARE IN BOLD, AND THE RUNNER-UPS ARE UNDERLINED. | - | EP | | | | DP | | | 3C | | | | | |---|---|---|---|---|--|---|--|--|--|--|---|--| | | Cora-ML | CiteSeer | WikiCS | PubMed | Cora-ML | CiteSeer | WikiCS | PubMed | Cora-ML | CiteSeer | WikiCS | PubMed | | MLP
GCN | 78.81±0.85
77.38±0.47 | 68.51±1.98
69.57±0.44 | 87.53±0.79
85.02±2.30 | $87.82 {\pm} 2.22 \\ 76.35 {\pm} 0.97$ | 89.04±1.02
85.89±2.06 | 88.86±1.20
81.52±0.62 | 86.55±2.24
79.93±0.98 | 94.92±0.66
83.19±1.97 | 71.66±0.46
72.73±1.47 | 65.14±1.47
63.17±1.41 | $77.23{\pm}1.56 \\ 71.32{\pm}1.96$ | 84.19±1.54
63.82±1.62 | | DGCN DiGCN DiGCN-IB DiGCL MagNet HoloNets | 76.79±0.79
72.98±1.34
74.76±1.19
64.88±0.92
77.50±2.11
80.00±0.78 | $\begin{array}{c} 65.74 \pm 1.34 \\ 67.87 \pm 1.55 \\ 71.28 \pm 0.77 \\ 59.87 \pm 0.89 \\ 68.30 \pm 0.76 \\ 71.49 \pm 0.83 \end{array}$ | 86.52 ± 1.71 82.88 ± 1.08 81.70 ± 0.67 76.32 ± 1.50 72.08 ± 1.45 80.71 ± 1.10 | 89.51 ± 1.94 84.18 ± 1.16 88.54 ± 0.89 71.39 ± 1.93 71.07 ± 0.77 88.52 ± 0.80 | $\begin{array}{c} 88.92{\pm}1.40 \\ 88.16{\pm}1.04 \\ 90.43{\pm}0.40 \\ \hline 72.29{\pm}1.63 \\ 90.43{\pm}1.07 \\ 89.04{\pm}1.79 \end{array}$ | $\begin{array}{c} 87.91 \!\pm\! 0.32 \\ 87.68 \!\pm\! 1.19 \\ \underline{89.10 \!\pm\! 1.12} \\ 68.72 \!\pm\! 1.33 \\ 88.39 \!\pm\! 1.60 \\ 88.39 \!\pm\! 1.03 \end{array}$ | 86.23 ± 0.87
83.36 ± 1.94
84.16 ± 1.50
69.64 ± 1.28
72.79 ± 0.61
86.01 ± 2.05 | 95.56±1.81
94.74±1.00
95.62±2.10
81.02±1.57
81.66±1.08
96.14±0.77 | $ \begin{array}{c} 70.84{\pm}0.57 \\ 68.37{\pm}0.36 \\ 71.33{\pm}1.75 \\ 46.79{\pm}2.22 \\ 70.59{\pm}1.93 \\ 71.99{\pm}2.07 \end{array}$ | 66.82±1.16
62.56±2.16
63.17±2.08
38.81±1.89
64.69±2.04
64.23±1.59 | 80.22 ± 0.72 73.89 ± 0.64 74.92 ± 0.84 61.10 ± 1.01 64.91 ± 0.85 68.49 ± 0.40 | $84.24{\pm}0.98 \\ 80.60{\pm}1.31 \\ 83.42{\pm}2.10 \\ 56.89{\pm}1.68 \\ 67.34{\pm}0.36 \\ 84.31{\pm}2.29$ | | DiGAE
Dir-GNN
LightDiC
DUPLEX | $ \begin{array}{c c} 65.60 \pm 1.25 \\ 79.29 \pm 0.32 \\ 72.38 \pm 1.33 \\ 81.31 \pm 1.14 \end{array} $ | $\begin{array}{c} 61.91{\pm}1.92 \\ 69.36{\pm}1.41 \\ 65.53{\pm}1.45 \\ 80.85{\pm}1.85 \end{array}$ | 73.95 ± 2.14 86.87 ± 1.82 83.73 ± 0.32 90.66 ± 0.39 | $60.31 \pm 0.69 90.12 \pm 2.04 77.93 \pm 0.45 91.36 \pm 1.33$ | $ \begin{vmatrix} 71.16 \pm 2.13 \\ 89.80 \pm 0.57 \\ 75.81 \pm 0.75 \\ 88.04 \pm 0.91 \end{vmatrix} $ | 56.40 ± 1.96
88.39 ± 1.72
83.89 ± 0.72
87.44 ± 1.53 | 59.83 ± 0.76 88.67 ± 0.64 85.38 ± 1.39 88.07 ± 0.51 | 55.19 ± 0.50
95.78 ± 2.01
80.08 ± 1.88
96.32 ± 0.65 | $\begin{array}{c c} 51.32{\pm}1.17 \\ 74.88{\pm}1.78 \\ \hline 64.61{\pm}0.93 \\ 74.22{\pm}1.15 \end{array}$ | 47.79 ± 0.83 64.54 ± 0.91 64.99 ± 0.86 76.41 ± 0.67 | 56.87 ± 1.77
80.50 ± 0.57
78.73 ± 0.36
77.50 ± 1.45 | $\begin{array}{c} 41.76 \pm 1.54 \\ 85.05 \pm 1.68 \\ 70.55 \pm 2.25 \\ 86.70 \pm 0.53 \end{array}$ | | DIGRAM | 92.12±0.45 | 86.85 ± 0.28 | 93.69 ± 0.57 | 92.63 ± 0.15 | 91.00±0.20 | $89.71 {\pm 0.46}$ | 91.64±0.18 | 97.32 ± 0.17 | 84.75±0.28 | 83.34 ± 0.50 | 89.25 ± 0.69 | 93.04±0.22 | Three subtasks: Existence Prediction (EP), Direction Prediction (DP), Three-class Prediction (3C) # Key Finding: Mitigating Over-smoothing - DIGRAM is the only method that maintains stable or even improves performance as layers increase on both node classification (NC) and link prediction (EP, DP, 3C) tasks. - In contrast, SOTA methods experience a sharp performance decline as the network deepens. - It strongly supports our claim that tokenized graph Mamba effectively mitigates the oversmoothing problem. ## Conclusion, Limitations & Future Work #### Summary - We introduce DIGRAM, a tokenized graph Mamba model for directed graph learning. - By treating message passing as a token sequence generation process, DIGRAM simultaneously captures local and global topological contexts. - DIGRAM achieves superior performance on node classification and link prediction tasks across 16 cases compared with SOTA methods. - Crucially, it demonstrates robustness against the over-smoothing problem as model depth increases. #### Limitations - **Parameter Sensitivity:** The performance of the model is somewhat sensitive to the choice of the charge parameter *q*, requiring careful manual tuning. - Heterophily Challenge: Similar to other models based on the classical message-passing framework, its performance on heterophilic directed graphs remains suboptimal. #### Future Work - Exploring strategies to address heterophily mixing. - Extending the methodology to signed graphs. # Thank you! GitHub Homepage